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a b s t r a c t 

Stack Overflow is the most popular Q&A website among software developers. As a platform for knowl- 

edge sharing and acquisition, the questions posted on Stack Overflow usually contain a code snippet. 

Determining the programming language of a source code file has been considered in the research com- 

munity; it has been shown that Machine Learning (ML) and Natural Language Processing (NLP) algorithms 

can be effective in identifying the programming language of source code files. However, determining the 

programming language of a code snippet or a few lines of source code is still a challenging task. Online 

forums such as Stack Overflow and code repositories such as GitHub contain a large number of code 

snippets. In this paper, we design and evaluate Source Code Classification (SCC++), a classifier that can 

identify the programming language of a question posted on Stack Overflow. The classifier achieves an 

accuracy of 88.9% in classifying programming languages by combining features from the title, body and 

the code snippets of the question. We also propose a classifier that only uses the title and body of the 

question and has an accuracy of 78.9%. Finally, we propose a classifier of code snippets only that achieves 

an accuracy of 78.1%. These results show that deploying Machine Learning techniques on the combina- 

tion of text and code snippets of a question provides the best performance. In addition, the classifier can 

distinguish between code snippets from a family of programming languages such as C, C++ and C#, and 

can also identify the programming language version such as C# 3.0, C# 4.0 and C# 5.0. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

In the last decade, Stack Overflow has become a widely used

esource in software development. Today inexperienced program-

ers rely on Stack Overflow to address questions they have regard-

ng their software development activities. 

Forums like Stack Overflow and Code Review rely on the tags

f questions to match them to users who can provide answers.

owever, new users in Stack Overflow or novice developers may

ot tag their posts correctly. This leads to posts being downvoted

nd flagged by moderators even though the question may be rele-

ant and adds value to the community. In some cases, Stack Over-

ow questions that are related to programming languages may lack

 programming language tag. For example, Pandas is a popular
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ython library that provides data structures and powerful data

nalysis tools; however, its Stack Overflow questions usually do not

nclude a Python tag. This could create confusion among develop-

rs who may be new to a programming language and might not

e familiar with all of its popular libraries. The problem of missing

anguage tags could be addressed if posts are automatically tagged

ith their associated programming languages. 

Code snippet tools, such as gist and pastebin, allow users to or-

anize and share their code snippets with other users. These tools

annot predict the programming languages of these snippets and

ssume that the code snippets have already been tagged with the

orrect programming language by the user. 

Existing solutions to this prediction problem are not satisfac-

ory. Integrated Development Environment (IDE) such as CLion,

clipse, and text editors such as Notepad++, SublimeText and Atom

redict the language based on the file extension rather than the

ource code itself. This can cause inconvenience to the users as

hey need to create the file with the correct extension manually

o enable syntax highlighting in these editors. 

https://doi.org/10.1016/j.jss.2019.110505
http://www.ScienceDirect.com
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Machine Learning (ML) and Natural Language Processing (NLP)

based techniques have been widely applied in the study of source

codes (cf. Hindle et al., 2009; Nguyen et al., 2013; Bielik et al.,

2016; Oda et al., 2015; Nguyen and Nguyen, 2015 ). It has been

shown that these techniques can help with a variety of impor-

tant tasks involving programming languages such as understand-

ing the summary of source code, code completion and suggestion,

code engine search and classifying programming languages. 

Classifying programming languages of source code files using

ML and NLP methods has been well explored in the research com-

munity (cf. Kennedy et al., 2016; Gilda, 2017; Khasnabish et al.,

2014 ). It has been established that the programming language of

a source code file can be identified with high accuracy. However,

most of the previous work that study the classification of program-

ming languages use the GitHub dataset in which the size of source

code files is typically large. Applying ML and NLP methods to clas-

sify a large source code file provides a very high accuracy as the

large sample contains many features that help the machine learn-

ing model to learn better. In this paper, we are interested in a tool

that can classify a code snippet which is a small block of reusable

code with at least two lines of code, a much more challenging task.

The only previous work that studies classification of the program-

ming languages from a code snippet or a few lines of source code

is the work of Baquero et al. (2017) . However, they achieve low

accuracy showing that identifying programming languages from

a small source code or a code snippet is much harder than from

larger pieces. 

The only known tool that can predict the programming lan-

guage of a code snippet is Programming Languages Identification

(PLI), available in Algorithmia, a marketplace for AI based algo-

rithms ( Programming language identification tool, 2018 ). PLI sup-

ports 21 programming languages: Bash, C, C#, C++, CSS, Haskell,

HTML, Java, JavaScript, Lua, Objective-C, Perl, PHP, Python, R, Ruby,

Scala, SQL, Swift, VB.Net and Markdown. It is claimed that PLI can

predict 21 languages with a reported accuracy of 99.4% top1 accu-

racy on GitHub source code. However, code snippets from Stack

Overflow are much smaller in size compared to GitHub source

code and the accuracy of PLI for code snippet classification has not

been looked at. 

In this paper, we conduct an empirical study of a classifier,

SCC++, to predict the programming languages in Stack Overflow

questions. Our research questions are: 

1. RQ1. Can we predict the programming language of a ques-

tion in Stack Overflow? 

2. RQ2. Can we predict the programming language of a ques-

tion in Stack Overflow without using code snippets inside

it? 

3. RQ3. Can we predict the programming language of code

snippets in Stack Overflow questions? 

For the first research question, we are interested in evaluating

how machine learning performs while trying to identity the lan-

guage of a question when all the information in a Stack Overflow

question is used; this includes its title, body (together referred to

as textual information) and the code snippets in it. The purpose

of the second research question is to determine if the inclusion

of code snippets is essential to determining the programming lan-

guage that a question refers to. Finally, the purpose of the third re-

search question is to evaluate the ability to use machine learning

to predict the language of a snippet of source code; a successful

predictor will have applications beyond Stack Overflow, as it could

also be applied to snippet management tools and code search en-

gines that scan documentation and blogs for relevant information. 

The main contributions of this paper are as follows: 

1. A prediction method that uses a combination of code snip-

pets and textual information in a Stack Overflow question.
This classifier achieves an accuracy of 88.9%, a precision of

0.89 and a recall of 0.89 in predicting the programming lan-

guage tag. 

2. A classifier that uses only textual information in Stack Over-

flow questions to predict their programming language. This

classifier achieves an accuracy of 78.9%, a precision of 0.81

and a recall of 0.79 which is much higher than the previous

best model ( Baquero et al., 2017 ). 

3. A prediction model based on Random Forest ( Breiman, 2001 )

and XGBoost ( Chen and Guestrin, 2016 ) classifiers that pre-

dicts the programming language using only a code snippet

in a Stack Overflow question. This model is shown to pro-

vide an accuracy of 78.1%, a precision of 0.79 and a recall of

0.78. 

4. Comparison of SCC++ to Programming Languages Identifica-

tion (PLI) to show that SCC++ achieves much higher accuracy

than PLI. PLI can only achieve an accuracy of 55.5%, a preci-

sion of 0.61 and a recall of 0.55 in classifying 21 program-

ming languages. 

5. Evaluation results demonstrating that SCC++ can also distin-

guish between code snippets from the family of program-

ming languages, C, C# and C++ with an accuracy of 80%, and

can identify the programming language version, C# 3.0, C#

4.0 and C# 5.0 with an accuracy of 61%. 

The rest of the paper is organized as follows. We begin by dis-

ussing the related work in Section 2 . In Section 3 , we describe

ataset extraction and processing as well as machine learning clas-

ifiers. Our methodologies and results are presented in Section 4 .

ections 5 and 6 present the discussion and future work. Finally,

hreats to validity and conclusions are outlined in the last two sec-

ions of the paper ( Sections 7 and 8 ). 

. Related work 

Predicting a programming language of a given source code file

as been a rising topic of interest in the research community. 

Kennedy et al. (2016) proposed a model to identify the soft-

are languages of entire source code files from Github using natu-

al language identification techniques. Their classifier, based on five

tatistical language models from NLP trained on a GitHub dataset,

dentified 19 programming languages with an accuracy of 97.5%.

ilda (2017) used a dataset from GitHub repositories for training a

onvolutional neural network classifier. Their classifier could clas-

ify 60 programming languages of source code files from Github

ith 97% accuracy. 

Khasnabish et al. (2014) , collected more than 20,0 0 0 source

ode files to train and test their model. These source codes were

xtracted from multiple repositories in GitHub. The model was

rained and tested using a Bayesian classifier model and was able

o predict 10 programming languages with 93.48% accuracy. 

Some editors such as Sublime and Atom add highlights to

ode based on the programming language. However, this requires

n explicit extension, e.g..html,.css,.py. Portfolio ( McMillan et al.,

011 ) is a search engine that supports programmers in finding

unctions that implement high-level requirements in query terms.

his engine does not identify the language, but it analyzes code

nippets and extracts functions which can be reused. Holmes et al.

2005) developed a tool called Strathcona that can find similar

nippets of code. 

David et al. (2011) collected 41,0 0 0 source code files from

itHub for the training dataset and 25 source code files are ran-

omly selected for the testing dataset. However, their classifier,

hat used supervised learning and intelligent statistical feature se-

ection, only achieved 48% accuracy. 
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In ( Baquero et al., 2017 ), the authors predicted the program-

ing language of code snippets of Stack Overflow posts. 10 0 0

uestion posts were extracted for each of 18 different program-

ing languages. They trained their classifier using a Support

ector Machine algorithm. Their model achieved a very low accu-

acy of 44.6% compared to the previous works because predicting

he programming language of a code snippet is more complex and

hallenging than predicting the programming language of a source

ode file. 

Rekha et al. (2014) proposed a hybrid auto-tagging system that

uggests tags to users who create questions. When the post con-

ains a code snippet, the system detects the programming language

ased on the code snippets and suggests many tags to users. Multi-

omial Naive Bayes (MNB) was trained and tested for the proposed

lassifier which achieved 72% accuracy. Saha et al. (2013) converted

tack Overflow questions into vectors, and then trained a Sup-

ort Vector Machine using these vectors and suggested tags used

he model obtained. The tag prediction accuracy of this model is

8.47%. Although it works well for some specific tags, it is not

ffective with some popular tags such as Java. Stanley and Byrne

2013) used a cognitive-inspired Bayesian probabilistic model to

hoose the most suitable tag for a post. This is the tag with the

ighest probability of being correct given the a priori tag probabil-

ties. However, this model normalizes the top for all questions, so

t is unable to differentiate between a post where the top predicted

ag is certain, and a post where the top predicted tag is question-

ble. As a consequence, its accuracy is only 65%. 

. Tool description 

SCC++ is a classification tool for identifying the programming

anguage of code snippets and textual information. It is currently

ble to identify 21 different programming languages. SCC++ is an

pen source tool and therefore, it is possible to train it on a

ew dataset to support and identify a new programming language.

CC++ is trained using a dataset curated from Stack Overflow and

s implemented using Scikit-Learn Pedregosa et al. (2011) , a ma-

hine learning library in Python. 

Fig. 1 shows how SCC++ functions. SCC++ is described in detail

n the following subsections. 

.1. Dataset extraction and processing 

In this section, the details of the Stack Overflow dataset are dis-

ussed. Then, the steps used for data extraction and processing are

xplained. 

.1.1. Stack overflow selection 

As of July 2017, Stack Overflow had 37.21 million posts, of

hich 14.45 million are questions with 50.9k different tags. In

his paper, the programming language tags in Stack Overflow are
Fig. 1. Functioning of SCC++. 
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f interest. The 21 programming languages that were selected in

ur study are very popular in Stack Overflow according to 2017

tack Overflow developer survey ( Developer, 2017 ). They constitute

round 80% of the questions in Stack Overflow. The languages se-

ected for our study are: Bash, C, C#, C++, CSS, Haskell, HTML, Java,

avaScript, Lua, Objective-C, Perl, PHP, Python, R, Ruby, Scala, SQL,

wift, VB.Net, Markdown. 

.1.2. Extraction and processing of stack overflow questions 

The Stack Overflow July 2017 data dump was used for analysis.

n our study, questions with more than one programming language

ag were removed to avoid potential problems during training.

uestions chosen contained at least one code snippet, and the

ode snippet had at least 2 lines of code. For each programming

anguage, 12,0 0 0 random questions were extracted; however, two

rogramming languages had less than 12,0 0 0 questions: Mark-

own (1,210) and Lua (8,107). In total, 232,727 questions were

elected for the study. Fig. 3 (a) shows an example of a Stack Over-

ow post 1 . It contains (1) the title of the post (2) the text body (3)

he code snippet and (4) the tags of the post. It should be noted

hat the tags of the question were removed and not included as a

art of text features during the training process to eliminate any

nherent bias. 

The.xml data was parsed using xmltodict and the Python Beau-

iful Soup library to extract the code snippets and text from each

uestion separately. See Fig. 4 . A Stack Overflow question con-

ists of a title, body and code snippet. The tags < code > and

 code > were utilized to extract the code snippet from Stack Over-

ow question. In some cases, a question contained multiple code

nippets; these were combined into one. The questions were used

o create three datasets: textual information, code snippets and

ombination of textual information and code snippets. 

The title and body (which we refer to as textual information)

nd code snippets were used to answer the first research question.

he textual information was used to answer the second research

uestion. Finally, the code snippets were used to answer the last

esearch question. 

Machine learning models cannot be trained on raw text be-

ause their performance is affected by noise present in the data.

he textual information (title and body) needed to be cleaned

nd prepared before the machine learning model can be trained

o provide a better prediction. A few preprocessing steps were

equired to clean the text. First, non-alphanumeric characters such

s punctuation, numbers and symbols were removed. Second,

ntity names were identified using the dependency parsing of the

pacy Library ( Honnibal and Johnson, 2015 ). An entity name is a

roper noun (for example, the name of an organization, company,

ibrary, function etc.). Third, stop words such as after, about, all, and

rom etc. were removed. Fourth, since the entity name can have

ifferent forms (such as study, studies, studied and studious), it is

seful to train using one of these words and predict the text con-

aining any of the word forms. To achieve this goal, stemming and

emmatization was performed using the NLTK library in Python

 Loper and Bird, 2004 ). At the end of all the preprocessing steps,

he remaining words were used as features to help train the ma-

hine learning model. Fig. 3 (a) is the original Stack Overflow post

nd Fig. 3 (b) is the Stack Overflow post after application of NLP

echniques. However, code snippets were treated as a natural lan-

uage constructs, which means that punctuation was removed. The

eatures of a code snippet are the keywords, identifier, name of the

ibrary etc. It should be noted that stemming and lemmatization

ere not applied on code snippets. 
1 https://stackoverflow.com/questions/1642697/. 
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Fig. 2. The length of code snippets in the SO dataset. 

Fig. 3. An example of a Stack Overflow Question. 
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2 https://github.com/Kamel773/SourceCodeClassification-2019. 
The extracted set of questions provide a good coverage of dif-

ferent versions of programming languages. For example, code snip-

pets were extracted for the python tags: Python-3.x, Python-2.7,

Python-3.5, Python-2.x, Python-3.6, Python-3.3 and Python-2.6, for

the Java tags: Java-8 and Java-7, and for the C++ tags: C++11, C++03,

C++98 and C++14. The snippets extracted had a significant variation

in number of lines of code, as shown in Fig. 2 . 

3.2. Machine learning classifiers 

The ML algorithms Random Forest Classifier (RFC) and XGBoost

(a gradient boosting algorithm) were employed. These algorithms

provided higher accuracy compared to the other algorithms we

explored, ExtraTree and MultiNomialNB. The performance metrics

used in this paper are precision, recall, accuracy, F1 score and con-

fusion matrix (for the third research question). 

3.2.1. Random forest classifier (RFC) 

RFC ( Breiman, 2001 ) is an ensemble algorithm which combines

more than one classifier. This classifier generates a number of de-

cision trees from randomly selected subsets of the training dataset.

Each subset provides a decision tree that votes to make the final

decision during test. The final decision made depends on the deci-

sion of a majority of trees. One advantage of this classifier is that

if one or few of the trees make a wrong decision, it will not affect

the accuracy of the result significantly. Also, it avoids the overfit-

ting problem seen in the Decision Tree model. The total number
f trees in the forest is an important parameter because a large

umber of trees in the forest give high accuracy. 

.2.2. XGBoost 

XGBoost ( Chen and Guestrin, 2016 ), standing for “Extreme Gra-

ient Boosting”, is a tree based model similar to Decision Tree and

FC. The idea behind boosting is to modify the weak learner to be

 better learner. Recall that Random Forest is a simple ensemble

lgorithm that generates many subtrees and each tree predicts

he output independently. The final output will be decided by the

ajority of the votes from the subtrees. However, XGBoost is a

etter model because each subtree makes the prediction sequen-

ially. Hence, each subtree learns from the mistakes that were

ade by the previous subtree. The idea of XGBoost came from

radient boosting, but XGBoost uses the regularized model to help

ontrol overfitting and give a better performance. 

.3. Usage example 

SCC++ is a simple command-line tool, and was built based on

tack Overflow dataset and machine learning classifiers. To run

CC++, the first step is to load the dataset and select the feature

et. The next step is to train the machine learning algorithm on

he selected features. Subsequently, users will be asked to enter

heir code snippet through command line. Finally, the predicted

rogramming language is output. SCC++ is open source 2 and the
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Fig. 4. The dataset extraction process. 
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ataset used is available online. 3 SCC++ can be used in three differ-

nt modes; code snippets only, textual information only or a com-

ination of code snippet and textual information. 

. The empirical study 

In this section, the results obtained for the three research ques-

ions are described in detail and in addition, SCC++ is compared to

ther existing tools. 

.1. Evaluation of SCC++ 

SCC++ was evaluated to answer the three research questions,

Q1-3. For the first research question, our goal was to evaluate if

CC++ can classify the language of a question when all the infor-

ation in a Stack Overflow question is used; this includes its title,

ody (textual information) and code snippets in it, across 21 pro-

ramming languages. The purpose of the second research question

as to evaluate if the inclusion of code snippets is an essential
3 https://drive.google.com/open?id=1leMs0rdKAfX1UYEhSEe9a1npIWrIvqr6 . 

p  

t  

a  
actor in determining the programming language that a question

efers to. Finally, in the third research question, the task of classify-

ng the programming language of code snippets of Stack Overflow

as explored. In addition, it was checked if SCC++ can identify dif-

erent versions of one programming language, C# 3.0, C# 4.0 and

# 5.0 and also if SCC++ can distinguish between code snippets

rom a family of programming languages such as C, C++ and C#. 

.1.1. Methodology 

Textual information (title and body) and code snippets ex-

racted from the Stack Overflow questions were split using the

erm Frequency-Inverse Document Frequency (TF-IDF) vectorizer 

rom the Scikit-learn library ( Pedregosa et al., 2011 ). The Minimum

ocument Frequency (Min-DF) was set to 10, which means that

nly words present in at least ten documents were selected (a doc-

ment can be either the code snippet, the textual information, or

oth—code snippet and textual information). This step eliminates

nfrequent words from the dataset which helps machine learning

odels learn from the most important vocabulary. The Maximum

ocument Frequency (Max-DF) was set to default because the stop

ords were already removed in the data preprocessing step dis-

ussed in Section 3.1 . 

The machine learning models were tuned using Random-

earchCV, which is a tool for parameter search in the Scikit-learn

ibrary. The XGBoost algorithm has many parameters, such as

inimum child weight, max depth, L1 and L2 regularization, and

valuation metrics such as Receiver Operating Characteristic (ROC),

ccuracy and F1 score. RFC is a bagging classifier and has a param-

ter number of estimators which is the number of subtrees used

o fit the model. It is important to tune the models by varying

hese parameters. However, parameter tuning is computationally

xpensive using a technique such as grid search. Therefore, a deep

earning technique called Random Search (RS) tuning was used to

rain the models. All model parameters were fixed after RS tuning

n the cross-validation sets (stratified ten-fold cross-validation).

or this purpose, the dataset was split into training, validation and

est partitions. Test data consisted of 20% of total data. The training

ataset was split into k = 10 folds. During training, 9 folds were

sed for training and the left out fold was used for validation.

he trained model was evaluated on cross validation fold and dis-

arded. This process is then repeated till we train and evaluate on

ll folds of data. This technique is called k -fold validation. We used

 = 10 and all reported cross valuation accuracy are average values

 James et al., 2013 ). 

As a part of the third question, there were two sub research

uestions. The purpose of the first sub research question was to

valuate if SCC++ is able to distinguish between a code snippets

cross one family of programming languages, C, C# and C++. To

nswer this research question, we created a subset of our dataset

hich only contains the three programming languages C, C# and

++. Then, the dataset was split into training (including validation

ata) and test data in the ratio of 80:20 as described above. The

ther research question was to evaluate if SCC++ can identify dif-

erent versions of one programming language, C# 3.0, C# 4.0 and

# 5.0. A new dataset was extracted from Stack Overflow using

hree question tags, C# 3.0, C# 4.0 and C# 5.0, to answer this sub

esearch question. 

.1.2. Results 

RQ1. Can we predict the programming language of a ques-

ion in Stack Overflow? 

To answer this question, XGBoost and RFC classifiers were

rained on the combination of textual information and code snip-

et datasets. The RFC classifier achieves an accuracy of 87.7%, and

he average score for precision, recall and F1 score were 0.88, 0.88

nd 0.88 respectively; on the other hand, the XGBoost achieved an

https://drive.google.com/open?id=1leMs0rdKAfX1UYEhSEe9a1npIWrIvqr6
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Table 1 

The F1 score for all the three research questions. The Min and Max of the scores 

for each column are highlighted. 

Lang. / Algos XGBoost Random Forest 

RQ3 RQ2 RQ1 RQ3 RQ2 RQ1 

Bash 0.80 0.90 0.95 0.85 0.64 0.90 

C 0.76 0.85 0.86 0.81 0.85 0.90 

C# 0.80 0.81 0.91 0.78 0.65 0.84 

C + 0.49 0.90 0.91 0.73 0.50 0.79 

CSS 0.87 0.91 0.97 0.77 0.82 0.83 

Haskell 0.90 0.87 0.97 0.78 0.90 0.96 

HTML 0.57 0.64 0.69 0.55 0.63 0.63 

Java 0.70 0.53 0.78 0.76 0.62 0.81 

Javascript 0.80 0.88 0.94 0.74 0.81 0.89 

Lua 0.86 0.91 0.97 0.70 0.76 0.79 

Markdown 0.77 0.61 0.83 0.91 0.88 0.97 

Objective-C 0.65 0.83 0.91 0.88 0.95 0.98 

Perl 0.77 0.85 0.92 0.41 0.88 0.78 

PHP 0.75 0.64 0.82 0.88 0.79 0.94 

Python 0.89 0.92 0.98 0.79 0.88 0.94 

R 0.78 0.85 0.89 0.78 0.83 0.91 

Ruby 0.72 0.83 0.89 0.72 0.82 0.87 

Scala 0.78 0.85 0.92 0.81 0.80 0.90 

SQL 0.67 0.76 0.80 0.79 0.83 0.91 

Swift 0.87 0.81 0.94 0.89 0.91 0.96 

VB.Net 0.86 0.67 0.92 0.77 0.82 0.86 
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accuracy of 88.9%, and the average score for precision, recall and

F1 score were 0.89, 0.89 and 0.89 respectively. The results for XG-

Boost classifier are discussed in further detail because it provides

the best performance. Most programming languages had a high F1

score: Python (0.98), Lua (0.97), CSS (0.97) and Haskell (0.97) had

the highest, while HTML (0.69), Java (0.78), SQL (0.80) and PHP

(0.82) had the lowest. Table 1 gives the F1 score for each program-

ming language using XGBoost and Random Forest classifiers on the

combination of textual information and code snippets. 4 

RQ2. Can we predict the programming language of a ques-

tion in Stack Overflow without using code snippets inside it? 

To answer this research question, two machine learning models

were trained using the XGBoost and RFC classifiers on the dataset

that contained only the textual information. The XGBoost classi-

fier achieved an accuracy of 78.9%, and the average score for preci-

sion, recall and F1 score were 0.81, 0.79 and 0.79 respectively. RFC

achieved a slightly lower performance than XGboost, with an ac-

curacy of 78.2% and an average score for precision, recall and F1

score of 0.79, 0.78 and 0.78 respectively. Note that the accuracy of

XGBoost using textual information decreased by about 10% com-

pared to using both the textual information and its code snippets.

Table 1 shows the F1 score for each programming language using

XGBoost and Random Forest classifiers on textual information. 

The top performing languages based on the F1 score were

Python (0.92), Lua (0.91), CSS (0.91), C++ (0.90), Bash (0.90),

JavaScript (0.88) and Haskell (0.87). It should be further noted that

the languages Python, Haskell, CSS and Lua had a high F1 score

and performed very well in both the (RQ1) and (RQ2). 

RQ3. Can we predict the programming language of code

snippets in Stack Overflow questions? 

To predict the programming language from a given code snip-

pet, two ML classifiers were trained on the code snippet dataset.

XGBoost achieved an accuracy of 77.4%, and the average score for

precision, recall and F1 score were 0.78, 0.77 and 0.78 respectively.

RFC achieved an accuracy of 78.1%, and the average score for pre-

cision, recall and F1 score were 0.79, 0.78 and 0.78 respectively.

Table 1 provides the F1 score of each programming language while

using XGBoost and Random Forest on code snippets. 
4 We focus on F1 scores in this section. All of our results for precision and recall 

can be found on our GitHub repository. 

s  

P  

c  

s  
When a Random Forest classifier was used, the programming

anguages Markdown (0.91), Objective-C (0.88) and PHP (0.88) had

 good F1 score. The F1 score of PHP in (RQ1) and (RQ3) were

ery high; however, in (RQ2) the F1 score dropped down by 10%

hich means the features from code snippets helps machine learn-

ng algorithms. In XGBoost, Objective-C had the worst F1 score and

recision (0.65 and 0.58); but its recall was high (0.75). When the

rogramming language of a code snippet was extremely hard to

dentity, XGBoost frequently misclassified it as Objective-C, while

e observed that RFC misclassified such snippets as Haskell. We

ooked manually at some of these code snippets and were not able

o identify the programming language. For example, such a code

nippet only contains a declaration and assignment of a variable

r an array or a body of a for loop. This is the main motivation

or combining the textual information and code snippet in (RQ1).

f the classifier gets confused when predicting the programming

anguages from a code snippet, the textual information (title and

ody) will help the machine learning model to make a better pre-

iction. Figs. 5 and 6 show the confusion matrix for the XGBoost

nd RFC classifiers. Table 2 shows how the accuracy improves as

he minimum size of the code snippet in the dataset is increased

rom 2 to 20 lines. 

The comparison between the results of textual information

ataset and code snippet dataset shows a similar accuracy (in aver-

ge). On the other hand, using the combination of textual informa-

ion and code snippet significantly increased the accuracy by 10%

ompared to using only the textual information. Since many Stack

verflow posts can have a large textual information and a small

ode snippet or vice versa, combining the two gives a high accu-

acy in (RQ1). 

RQ3-1. Can SCC++ distinguish between code snippets across

ne family of programming languages such as C, C# and C++? 

This experiment involved training and testing SCC++ on three

rogramming languages from the same family, C, C++ and C#,

ultinomial Naive Bayes (MNB) classifier was used to answer this

uestion. In this experiment SCC++ achieved a high accuracy of

0.0% and the average scores for precision, recall and F1 score were

.81, 0.80 and 0.80 respectively. Table 3 shows the details of the

erformance on C, C# and C++. C# has unique features compared

o C and C++ and hence SCC++ can classify C# with a high F1 score

f 0.88. The percentage of C++ code snippets misclassified as C was

0%. 

RQ3-2. Can SCC++ identify different versions of a program-

ing language, specifically C#? 

For this experiment, SCC++ was trained and tested using Multi-

omial Naive Bayes (MNB) classifier on a dataset that only con-

ained the three versions of C#. SCC++ achieved an accuracy of

1.0% and the average of scores for precision, recall and F1 score

ere 0.61, 0.61 and 0.61 respectively. The details of the perfor-

ance is shown in Table 3 . We noticed that SCC++ found it par-

icularly hard to distinguish between the versions, C# 4.0 and C#

.0. These results show that, while SCC++ is highly accurate in dis-

inguishing between code snippets from C, C# and C++ family, it is

ess accurate at identifying the different versions of C# 3.0, C# 4.0

nd C# 5.0. 

.2. Comparison to PLI 

.2.1. Methodology 

As mentioned in the introduction, it is claimed that PLI provides

 high accuracy while predicting the programming language of a

iven source code file. However, predicting the language of a code

nippet is far more challenging. We evaluated the performance of

LI in predicting the programming languages of code snippets and

ompared its results with SCC++. 150 code snippets were randomly

elected from each programming language. This created a subset of
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Fig. 5. Confusion matrix for the XGBoost classifier trained on code snippet features. The diagonal represents the percentage of snippets of a programming language correctly 

predicted. 
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p  
200 code snippets which could be used for prediction using PLI.

e used only 150 snippets because we had to pay for the classi-

cation of each one of them. We used the urlib library in Python

o make the API calls to PLI to generate predictions for all 4200

ode snippets. The API call returned a JSON file with languages as

ey and corresponding probability for all 21 languages that it sup-

orted. The programming language with highest probability score

as selected as the predicted language. We could compare SCC++

ith PLI with respect to the first research question because both

ools support the 21 programming languages. However, we could
ot study the performance of PLI with respect to research ques-

ions RQ3-1 and RQ3-2 because this tool is closed-source and we

ere not able to train it using a dataset that contained only a fam-

ly of programming language or different versions of a program-

ing language. 

.2.2. Results 

PLI achieved an accuracy of 55.5% and the average scores for

recision, recall and F1 score were 0.61, 0.55 and 0.55 respectively.
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Fig. 6. Confusion matrix for the RFC classifier trained on code snippet features. The diagonal represents the percentage of snippets of a programming language correctly 

predicted. 
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5 SCC, a preliminary version of SCC++, is a tool that classifies the program- 

ming language of a code snippet from Stack Overflow using the MNB algorithm 
The F1 score of PLI for each programming language is shown in

Table 4 . 

CSS had the worst recall score of 0.19 among the program-

ming languages. This is because 40% of code snippets of CSS

were misclassified as HTML. The syntax and operations of these

two programming languages are extremely similar to each other.

Similarly; 21% of the code snippets of JavaScript were misclassi-

fied as HTML. We also noticed that PLI misclassified many code

snippets from CSS and HTML as Javascript, pointing to its inherent

weakness. 
(
Objective-C had the highest F1 score of 0.77. This language has

ery unique syntax compared to other programming languages in

ur study. Some programming languages that were correctly clas-

ified with high precision were VB.Net (0.89), R (0.88), Objective-C

0.85) and Bash (0.79). The overall F1 score for SCC++ was higher

han PLI and SCC 

5 ; however, Perl had a good F1 score of 0.69 and
 Alrashedy et al., 2018 ). 
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Table 2 

Effect of the minimum number of lines in a code snippet on accuracy. 

Minimum Lines Accuracy Precision Recall F1 score 

More than 2 78.1% 0.79 0.78 0.78 

More than 5 79.9% 0.80 0.80 0.80 

More than 10 82.6% 0.83 0.83 0.83 

More than 15 85.1% 0.85 0.85 0.85 

More than 20 86.0% 0.86 0.86 0.86 

Table 3 

The performance of SCC++ when used for identifying different versions of a pro- 

gramming language. 

Language F1 score Language F1 score 

C 0.78 C#-3.0 0.77 

C# 0.88 C#-4.0 0.56 

C + 0.75 C#-5.0 0.58 

Table 4 

The comparison of F1 score for SCC++, SCC ( Alrashedy et al., 2018 ) and PLI.The Min 

and Max of the scores for each column are highlighted. 

Lang. / Tools PLI SCC SCC + 

Bash 0.67 0.76 0.85 

C 0.56 0.76 0.81 

C# 0.51 0.79 0.78 

C + 0.65 0.51 0.73 

CSS 0.30 0.86 0.77 

Haskell 0.67 0.89 0.78 

HTML 0.35 0.54 0.55 

Java 0.46 0.70 0.76 

JavaScript 0.48 0.78 0.74 

Lua 0.50 0.84 0.70 

Markdown 0.28 0.76 0.91 

Objective-C 0.77 0.57 0.88 

Perl 0.69 0.74 0.41 

PHP 0.62 0.74 0.88 

Python 0.69 0.88 0.79 

R 0.72 0.77 0.78 

Ruby 0.43 0.70 0.72 

Scala 0.72 0.76 0.81 

SQL 0.50 0.65 0.79 

Swift 0.54 0.84 0.89 

Vb.Net 0.60 0.83 0.77 
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6 https://github.com/Kamel773/SourceCodeClassification-2019. 
.74 in PLI and SCC respectively, and had the lowest F1 score of

.41 among all the programming languages in SCC++. 

19% of code snippets from C were classified as C++, and 7% of

ode snippets of C++ were classified as C. Ruby, HTML, CSS and

arkdown had the worst F1 scores of 0.43, 0.35, 0.30 and 0.28

espectively. Since HTML and CSS share a similar syntax and PLI

as inept in classifying these languages, the F1 score for these lan-

uages dropped down. 

. Discussion 

The most important observation in the previous section is that

or the research question (RQ1), XGBoost achieves a high accuracy

f 88.9%, while for (RQ2) and (RQ3), it only achieves an accuracy of

8.9% and 77.4% respectively. This observations highlights the im-

ortance of using the combination of textual information and code

nippets in predicting tags in comparison to textual information

r code snippet only. In some cases, Stack Overflow posts contain

ery small code snippets making it extremely hard to identify its

anguage as many programming languages share the same syntax. 

Dependency parsing and extracting of entity names using a

eural Network (NN) through Spacy appeared to help reduce noise

nd to extract important features from Stack Overflow questions.

his is likely the main reason for the significant improvement in

erformance compared to previous approaches in the literature. 
The analysis of the feature space of the top performing lan-

uages indicates that these languages have unique code snip-

et features (keywords/identifiers) and textual information fea-

ures (libraries, functions). For example, when the textual infor-

ation based features were visualized for Haskell, words such as

GHC’, ‘GHCI’, ‘Yesod’ and ‘Monad’ were obtained. ‘GHC’ and ‘GHCI’

re compilers for Haskell, ‘Yesod’ is a web-based framework and

Monad’ is a functional programming paradigm (Haskell is a func-

ional programming language). Most of the top performing lan-

uages have a small feature space (vocabulary) as compared to

ore popular languages such as Java, Vb.Net and C# which have a

arge number of libraries and standard functions, and support mul-

iple programming paradigms resulting in a large feature space. A

arge feature space adds more complexity to the ML models. We

ave compiled the top-50 code snippet features for all the pro-

ramming languages and uploaded them to our GitHub reposi-

ory. 6 

Recall that TF-IDF based approach was applied on the dataset

efore machine learning algorithms were trained, and achieved

ery high accuracy on both textual information and code snippets.

owever, another approach based on Word2Vec was also applied,

ut achieved much lower accuracy. Improving the accuracy of a

ord2Vec based classification is an interesting open problem. 

The current version of SCC++ is only covers the most popular

1 programming languages in Stack Overflow. In order to cover

ore languages, we studied an extension of our tool by adding a

ew class called “Others” during training and testing. This class

ontained a collection of code snippets from four other languages,

hich are Assembly, Go, Coffee Script and Matlab. Our experiment

howed a drop in accuracy of roughly 4% for the three questions.

he tool achieved an accuracy of 84.1% for RQ1, and an accuracy

f 75.3% and 74.0% for RQ2 and RQ3 respectively. In summary,

ur tool can be extended to cover all languages with some loss in

ccuracy. 

.1. Limitations of SCC++ 

SCC++ was trained to predict a programming language of Stack

verflow question and its snippets. In some cases, Stack Overflow

uestions may contain multiple code snippets from different lan-

uages. Such questions will have more than one language tag. It

s natural to ask if it is possible to extend SCC++ to predict multi-

le language tags. The problem of multi-label classification is much

ore challenging and is not considered in the current version of

CC++. 

. Future work 

The study of programming language prediction from textual in-

ormation and code snippets is still new, and much remains to be

one. Most of the existing tools focus on file extensions rather

han the code itself. In recent years, there has been tremendous

rogress made in the field of deep learning, especially for time se-

ies or sequence-based models such as Recurrent Neural Networks

RNNs) and Long Short-Term Memory (LSTM) networks. RNN and

STM models can be trained using source code one character at a

ime as input, but they can have a high computational cost. 

NLP and ML techniques perform much better in predicting

anguages compared to tools that predict directly from code snip-

ets. Stack Overflow text is somewhat unique in the sense that

t captures the tone, sentiments and vocabulary of the developer

ommunity. This vocabulary varies depending on the programming

anguage. Therefore, it is important that the vocabulary for each

rogramming language is captured, understood and separated. 
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The approach of this paper is to treat the code snippet as

containing natural language; the punctuation and syntax of the

programming language are not considered. A future direction of

research should consider punctuation and syntax as features to

identify the programming language of code snippets. 

In the future, our model will be evaluated using programming

blog posts, library documentation and bug repositories. This would

help us understand how general the model is. 

7. Threats to validity 

Construct Validity : In creating the datasets from Stack Overflow,

only the most popular programming languages were extracted,

and this was based solely on the programming language tag. How-

ever, some tags synonymous with languages were not included

in the extraction process. For example, ‘SQL SERVER’, ‘PLSQL’ and

‘MICROSOFT SQL SERVER’ are related to ‘SQL’ but were discarded.

Furthermore, we cannot be absolutely confident that all code

snippets of Stack Overflow are correct, these snippets may contain

incorrect syntax or could be debugging messages. 

Furthermore, we only chose Stack Overflow posts containing

code snippets with least two lines of code. This is because we

found some code snippets with one line of code, and it was dif-

ficult, using human intelligence, to identify its language. For exam-

ple, a code snippet with one line of code only contained an as-

signment of number to a variable, such as “i = 5 ” and “print(i)”,

and this could be hard to classify. 

Internal validity : We studied how SCC++ and PLI are able to clas-

sify the programming language of a code snippet. While we stud-

ied if SCC++ can distinguish between snippets from a family of pro-

gramming languages (C, C# and C++) and also examined if SCC++

can identify the three versions of programming language C#, we

were unable to run those experiments for PLI as it is closed-source.

Also, we were only able to evaluate PLI with 150 snippets because

we had to pay for every classified snippet. 

After the datasets were extracted, dependency parsing 7 was

used to select entity names so as to include only the most im-

portant features from textual information. The use of dependency

parsing can result in the loss of critical vocabulary and might affect

our results. However, we manually analyzed the vocabulary before

and after the dependency parsing to ensure that information re-

lated to the languages was not lost. 

External validity : We only used Stack Overflow as the source of

data for our analysis. We did not explore other sources such as

GitHub repositories or other sources of code such as extracting a

snippet from source code file of GitHub. Therefore, we cannot be

absolutely confident that our results would be the same across all

sources of code snippets. Also note that our comparison is only

against PLI since this is the only tool available at this time. This

is mainly due to the lack of open source tools for predicting lan-

guages. The current version of SCC++ is only able to classify the

most popular 21 programming languages and does not cover all

the programming languages found in Stack Overflow posts. 

8. Conclusions 

In this paper we discussed the importance of predicting lan-

guages from code snippets and textual information. In particular,

we chose to focus on predicting the programming language of

Stack Overflow questions. We argued that predicting the program-

ming language from code snippets is far more challenging than

from source code files considering complexity of modern program-

ming languages. We proposed Source Code Classification (SCC++),
7 Dependency parsing is the task of recognizing a sentence and assigning a syn- 

tactic structure to it ( Jurafsky and Martin, 2009 ). 

 

 

 tool built using a Random Forest and XGBoost classifiers trained

n a Stack Overflow dataset. 

Our results show that training and testing the classifier by com-

ining the textual information and code snippet achieves the high-

st accuracy of 88.9%. Other experiments using either textual in-

ormation or code snippets achieve accuracies of 78.9% and 78.1%

espectively. This implies that information from textual features is

asier for a machine learning model to learn compared to informa-

ion from code snippet features. Our results show that it is pos-

ible to identify the programming language of a snippet of few

ines of source code. Finally. We compared SCC++ against PLI, the

nly known proprietary tool for this problem and found that SCC++

chieved a much higher accuracy than PLI (that achieved only an

ccuracy of 55.5%) on code snippets from Stack Overflow posts. We

elieve that our tool could be applied in other scenarios such as

ode search engines and snippet management tool. 
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